H.T.No. **R20** O.P.Code: 20HS0836 SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year II Semester Regular & Supplementary Examinations August-2023 **DISCRETE MATHEMATICS** (Commmon to CSE, CSIT, CIC, CCC, CAD & CSM) Max. Marks: 60 Time: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Give an example of a graph that has neither an Eulerian circuit nor a CO1 **6M** Hamiltonian cycle. **b** Show that the givenfigures G1 and G2 are not isomorphic. CO₁ L2 **6M** G2 OR CO₁ L₂ 12M Explain Depth-First-Search, Breadth-First-Search Algorithm. UNIT-II 3 a Explain principle disjunctive normal form? Obtain the PDNF of CO2 L5 **6M** $P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$ b Explain principle conjunctive normal form? Obtain the PCNF of CO2 L5 **6M** $(\neg P \to R) \land (Q \leftrightarrow P)$ OR a Show that $\sim P$ is a valid conclusion from the premises $\sim (P \land \sim Q)$, CO2 **6M** $\sim Q \vee R$, $\sim R$ $(\exists x) M(x)$ follows logically from the premises CO₂ L₂ 6M **b** Show that $(\forall x)(H(x) \to M(x))$ and $(\exists x)H(x)$. UNIT-III Let A be a given finite set and P(A) its power set . let \subseteq be the inclusion CO3 L2 relation on the elements of P(A). Draw the Hasse diagram of $(P(A), \subseteq)$ for i) $A = \{a\}$ ii) $A = \{a, b\}$ iii) $A = \{a,b,c\}$ iv) $A = \{ a,b,c,d \}.$

OR

a On the set Q of all rational number operation * is defined by CO4 L2

b Show that the set{1,2,3,4,5} is not a group under addition and CO4 1.2

a*b=a+b-ab Show that this operation Q forms a commutative

monoid.

multiplication modulo 6.

Mo

6M

UNIT-IV

- 7 a Enumerate the number of non-negative integral solutions to the CO5 L3 inequality $x_1 + x_2 + x_3 + x_4 + x_5 \le 19$. **b** How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ there CO5 L3 **6M** each (i) $x_i \ge 2$ (ii) $x_i > 2$ OR a Applying pigeon hole principle show that of any 14 integers are selected CO5 L2 from the set $S = \{1, 2, 3... 25\}$ there are at least two whose summer 56. 6M Also write a statement that generalizes this result. b Show that if 8 people are in a room, at least two of them have bines CO5 L2 that occur on the same day of the week. **6M** UNIT-V a Solve $a_n = a_{n-1} + 2a_{n-2}, n \ge 2$ with the initial conditions $a_0 = 0$, CO6 **6M** $a_1 = 1$. **b** Solve $a_{n+2} - 5a_{n+1} + 6a_n = 2$ with the initial conditions $a_0 = 1$, $a_1 = 41$ **CO6 6M**
- 10 a Solve $a_n 5a_{n-1} + 6a_{n-2} = 2^n$, $n \ge 2$ with the initial contains CO6 $a_0 = 1$, $a_1 = 1$. Using generating functions. 6M **b** Solve $a_n - 4a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0$, $a_1 = 1$ 6M
 - *** END ***